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Apparent superluminality and the generalized Hartman effect in double-barrier tunneling
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Recent papers suggest that tunneling wave packets traverse the region of allowed propagation between two
potential barriers with superluminal group velocity and in a time independent of barrier separation. This
phenomenon has been termed the “generalized Hartman effect” and extended to multiple barriers. Here we
show that this delay time is not a transit time but a cavity lifetime. It does not imply superluminal velocity.
Reported experimental verifications of this effect are reinterpreted.
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I. INTRODUCTION

The issue of tunneling times has been controversial for
decades [1-8]. Part of the controversy stems from the fact
that several tunneling time definitions predict effective tun-
neling velocities that can exceed the speed of light ¢ in
vacuum. These predictions apply to both the quantum me-
chanical tunneling of particles through potential barriers and
the classical penetration of electromagnetic waves through
evanescent regions. One well known prediction, termed the
Hartman effect, states that the tunneling time, as measured
by the delay of the peak of a wave packet, becomes indepen-
dent of barrier length for reasonably opaque barriers [2,6—-8].
This effect, considered one of the outstanding paradoxes of
quantum mechanics [9], has been taken to imply superlumi-
nal and arbitrarily large group velocities for tunneling par-
ticles [4-9]. In recent papers we have shown that the Hart-
man effect can be explained by the saturation of stored
energy (or particle number) with barrier length as a result of
the exponential decay of the wave function with distance
[10-15]. Since the group delay is proportional to the stored
energy it saturates as the stored energy saturates. We pointed
out that this delay is not a propagation delay but a lifetime
and does not imply superluminal velocities. Since the wave
packets are much longer than the barrier, what is observed is
essentially a phase shift due to energy storage.

While the single-barrier problem is now better under-
stood, there are lingering questions regarding tunneling
through double barriers and multiple barriers in general. A
recent paper by Olkhovsky, Recami, and Salesi, suggests that
a particle or wave packet travels with superluminal, and in-
deed, infinite group velocity while crossing the region of
allowed propagation separating two potential barriers [16].
This claim is based on the fact that in the opaque barrier
limit used by these authors, the method of stationary phase
yields a group delay which is independent, not only of the
thickness of both barriers, but also of the separation L be-
tween the barriers. This phenomenon has been named the
“generalized Hartman effect,” an apparent extension of the
usual Hartman effect. The existence of this generalized Hart-
man effect has been accepted in the literature and several
authors have published extensions of the theory [17-21] as
well as experimental observations that appear to support this
claim [22]. Esposito has found that a wave packet travels in
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zero time across a multiple barrier [ 19] while Aharonov et al.
find a similar phenomenon in tunneling through an array of &
function potentials [20,21]. These paradoxical predictions
apply also to semiconductor superlattices, with the same sur-
prising result that unbounded group velocities are permitted
by such structures [23,24]. The experiment of Longhi er al.
reports a group velocity as large as 5c¢ and is purported to
present “clear experimental evidence that, for opaque barri-
ers, the traversal time is independent of barrier distance (gen-
eralized Hartman effect).” Indeed, an earlier experiment of
Nimtz et al. done at microwave frequencies reported that the
wave packet traversed the distance between barriers in zero
time [25], a phenomenon apparently supported by numerical
solutions of the Maxwell equations [26]. While the Hartman
effect for forbidden regions can be understood fairly simply
[10-15], a lack of dependence of group delay on distance in
a region of allowed propagation is more troublesome since
the wave functions in this region are oscillatory and do not
decay. Attempts have been made to explain this surprising
phenomenon on the basis of novel mechanisms such as “su-
peroscillations” and “weak values” [20,21]. However, those
explanations are not particularly transparent, at least to us.
In this paper we show explicitly that the calculated and
measured group delays in double-barrier tunneling are cavity
lifetimes that measure the decay of stored energy or the stor-
age time of particles. They are not transit times in the sense
of the time it takes a well defined point particle or wave
packet to travel from A to B, passing through every point in
between. We further show that the so-called generalized
Hartman effect is simply due to the neglect of the fact that in
the opaque limit nothing survives the voyage through the
first barrier. In other words, since the transmission through
the first barrier vanishes in the opaque limit, there is no am-
plitude in the second barrier or in the allowed region be-
tween the two. Since there is no energy beyond the first
barrier there is nothing to be stored and so the storage time is
zero. Since the amplitude of the transmitted wave goes to
zero, the phase is meaningless. It should not be surprising
that the group delay becomes independent of both the length
of the interbarrier region and the width of the second barrier.
In short, the generalized Hartman effect is an artifact. Under
nonresonant conditions, a sequence of opaque barriers is just
not a meaningful concept: if the first one is opaque, the sec-
ond one might as well not be there. On the other hand, if any
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FIG. 1. (Color online) Geometry of the double barrier. The wave
function is oscillatory in the allowed region and decays exponen-
tially in the barrier regions.

energy makes it into the region of allowed propagation be-
tween the barriers, the storage time in that region should be
proportional to the stored energy, which in turn is propor-
tional to the length of that region. The delay then should be
proportional to that length and not independent of it. It can
be arbitrarily brief if little energy is stored.

II. THE DOUBLE BARRIER AS A FABRY-PEROT CAVITY:
GROUP DELAY AND DWELL TIME

The double-barrier geometry is shown in Fig. 1. The
height of the barriers is V, their width is L, and their sepa-
ration L. Outside the barriers the potential is zero. Incident
from the left is a particle of mass m, wave number k, and
energy £E=hk?/2m. The stationary state problem of tunnel-
ing through two successive potential barriers in quantum me-
chanics is isomorphic to the transmission of electromagnetic
waves through successive photonic band gap structures [22]
or through successive waveguides below cutoff [25,26]. All
these physical situations can be understood simply by view-
ing them as Fabry-Pérot cavities [27]. Consider therefore a
Fabry-Pérot cavity (Fig. 2) with mirrors of reflectivity R and
transmissivity 7 spaced by a distance L. For simplicity we
assume the mirrors are lossless so that R+7=1. While the
following discussion is couched in terms of electromagnetic
waves, the results also hold for quantum wave packets. Inci-
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FIG. 2. Geometry of the Fabry-Pérot cavity. The transmitted
field is related to the stored cavity field. The incident wave packet is
assumed to be much longer than the cavity transit time so that
interferences build up. This is the situation for all cases of distor-
tionless tunneling.
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dent from the left is a field of amplitude E, which gives rise
to a cavity field E(z) made up of the superposition of multi-
ply reflected waves. If the cavity field is decomposed into a
forward component £y and a backward component Ej the
boundary conditions at the input mirror require that

EA0) = TE, + VRE(0), (1a)

E(0) = VRE#(0)e (1b)

where the wavenumber k=nw/c,w is the angular frequency
of the wave, and n is the refractive index of the lossless
medium mirrors within which the mirrors are embedded.
Solving for Ex(0) we find

E(0) = \TEy/(1 - ReL). )
The total cavity field at any point is then
E(z) = \"?Eo(eikz + V'Eei(ZkL"‘Z))/(l — Re'L). (3)

The field transmitted through the cavity is related to the for-
ward part of the cavity field and is given by

Er=TEye™ /(1 — Re™tt), (4)
The phase of the transmitted field is
(k) = kL + tan™'[R sin 2kL/(1 = R cos 2kL)],  (5)

which yields the group delay (also known as the phase time
or Wigner time) as [28]

dd 1-R? L
T do | 1+R2=2R cos(2kL) | v’

(6)

with ¢= (k) —kL and v=c/n. The group delay measures the
time difference between the appearance of an incident wave
packet peak at z=0 and a wave packet peak at z=L. These
peaks are not necessarily related by a simple causal transla-
tion since the incident and transmitted pulses are not the
same entity. In fact, the field at L at time ¢ is related, not just
to the field at z=0 at time r—L/v, but to the field at all prior
times as a result of the multiple reflections in the cavity.
Another measure of the interaction of a wave packet with
a barrier is the dwell time [29,30], defined as the ratio of the
time-average stored energy to the incident power:

7a=(U)/P,,. (7)

Here (Uy=(1/2)eon’A [ |E(z)|*dz, P;,y=(1/2)egnc|Ey|’A, A is
the cross sectional area of the cavity and g is the permittiv-
ity of free space. Using Eq. (3) we find that the time-average
stored energy in the cavity is

_ egn®ALT[1 + R+ 2\R(sin 2kL)/2kL]|Ey|?
- 2(1 + R*>=2R cos 2kL) '

(U) (8)

Upon dividing by the incident power we obtain the dwell
time
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(1 = R?) + 2TVR(sin 2kL)/2kL \ L
Ty = - 9

1+ R?=2R cos(2kL) v
The first term is identical to the group delay. The second
term is a rapidly oscillating contribution to the stored energy
which is very small for high frequency fields and gives rise
to a self-interference delay [4,12]. It is negligible for cavities
that are more than a few wavelengths long (kL>1). Since
the concept of group delay requires that a wave packet be at
least several wavelengths long, we see that within its regime
of applicability the group delay is identical to the dwell time.
Even when this condition is not satisfied, group delay will be
identical to dwell time at resonances and antiresonances of
the cavity QkL=mm,m=1, 2, ...).

The dwell time is the lifetime of stored energy escaping
through both ends of the cavity [15]. For quantum particles it
is the time spent in the barrier region, averaged over all
incoming particles, regardless of whether a particle is re-
flected or transmitted [30]. It is not the time spent by any one
particle. In a situation where most of the incoming particles
are reflected, the dwell time will obviously be very short. To
see how the dwell time and group delay relate to the escape
rate through both transmission and reflection channels, first
consider the case where the reflectivity of the mirrors is set
to zero. The time-average stored energy in the transparent
region of volume V=LA is just (Up)=(1/2)gyn*|Ey|*’AL. The
net energy flux transmitted in the forward direction through
this lossless, reflectionless region is just the input power P;,,.
Upon dividing (U,) by P;, we get L/ v= 1, the time it takes
for all the energy stored in the region of length L to leave
that region in the direction of the net flux and with velocity
v. Now allow the mirrors to have a finite reflectivity R. There
will now be a backward reflected power P, and a net trans-
mitted forward power P, such that, under quasistationary
conditions, the two sum to yield the input power: P;,=P,
+P,. The stored energy (U) in the volume between the mir-
rors will generally differ from its value in the absence of
mirrors. Again we can find the time taken for all the stored
energy to leave the cavity in the forward direction only by
dividing that energy by the transmitted power: (U)/P,=1,.
The forward escape rate is thus 1/7,. Similarly, the time
taken for all the energy to leave in the backward direction
only is obtained by dividing the energy by the reflected
power: (U)/ P,=7,. The backward escape rate is 1/7,. Since
the energy is escaping simultaneously through both channels,
the total escape rate is the sum 1/7=1/7.+1/7, or

1 P, P

TR

But this sum equals P;,/(U) which must therefore be the net
rate of escape of energy from both ends of the cavity. This
shows that the group delay or dwell time (U)/ P, is the life-
time of stored energy escaping through both ends. It is not
necessarily a transit time in situations where the pulse is
mostly reflected. Since it describes a simultaneous escape
process from both channels, one cannot simply divide the
length by the group delay and call it the group velocity for
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forward transit. Unfortunately, this has been the standard
practice [18].

The identity between group delay and cavity lifetime can
also be seen from the usual definition of the Q of a cavity

[31]:
0 =o(U)/Py, (10)

which is the ratio of the stored energy to the power dissi-
pated per cycle. The cavity lifetime is then defined as

7,=Qlw=(U)IP,. (11)

For a cavity without absorption the power dissipated is the
power that escapes through the mirrors. By Poynting’s theo-
rem this power lost is equal to the input power P;, and hence
we see that the group delay and dwell time are the same as
the usual cavity lifetime.

The group delay is proportional to the time-average stored
energy. The stored energy depends on the round trip phase
shift #=2kL seen by the wave as it bounces back and forth
within the cavity. Under resonant conditions, 6=2mm (m
=1,2,...), the recirculating fields add up in phase thereby
enhancing the stored energy and increasing the storage time.
The group delay or cavity lifetime at resonance is

Tgn=<1+R>£’ 12)

T v

which can be made arbitrarily large compared to the transit
time L/v as the mirror transmission 7— 0. This resonant
interaction forms the basis for “slow-light” devices and
resonant-tunneling diodes [32]. On the other hand, when 6
=(2m+ 1), antiresonant conditions obtain. Because of de-
structive interference between the recirculating phasors the
stored energy is reduced below the value it would have had
in the absence of the mirrors. Under these conditions the

group delay is
T \L
ff— [ —— | =
" _<1+R>V' (13)

This delay is always shorter than the cavity transit time and
can be made arbitrarily small as 7— 0. Indeed, when 7=0
the group delay is zero. This of course does not mean that a
pulse was transmitted through the Fabry-Pérot cavity in zero
time. It simply means that no energy was stored between the
mirrors, all of it was reflected, and no power was transmitted.
We also see that the group delay is nor independent of barrier
separation (contrary to the findings in Refs. [16—-18] but in-
creases at a linear rate with that separation, in proportion to
the stored energy. The rate of increase is proportional to the
transmissivity 7 of the first mirror. It is definitely not a transit
time but the cavity lifetime under nonresonant conditions.
Figure 3 shows the normalized group delay 7,/ 7, the nor-
malized dwell time 7,/ 7, and the normalized stored energy
(U)I{U,) as a function of round trip cavity phase shift. For
kL>1 all three quantities are identical. It is clear that the
regions where the group delay is less than the free space
transit time are exactly those regions where the stored energy
is reduced below the free space value through destructive
interference.
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FIG. 3. (Color online) The normalized group delay (7,/7,), nor-
malized dwell time (7,/7), and normalized stored energy
((UY/{Uy)) versus round trip phase shift in a Fabry-Pérot cavity
with mirrors of reflectivity R=0.9. For kL> m, the three quantities
are identical. The horizontal line at ordinate 1.0 shows the corre-
sponding value for R=0.

As previously noted [11,14], tunneling without distortion
requires narrowband pulses and hence pulses that are much
longer than the cavity round trip time. Under these condi-
tions when the pulse length is much greater than the cavity
length, quasistationary conditions hold. The fact that the
pulses have to be long compared to the structure is a very
important consideration. It means that ultimately the duration
of the tunneling process is just given by the length of the
wave packet with an additional small delay due to energy
storage. This delay is a small fraction of the pulse length,
which means that the transmitted field is always beneath the
envelope of the freely propagating pulse.

We can now explain the apparent superluminality seen in
multiple-barrier tunneling. Typical pulsed experiments that
report superluminal group “velocities” compare the arrival
time #; of a peak for a reference pulse that has traversed a
distance L in a barrier-free region with the arrival time ¢, of
the peak of the transmitted fraction of a pulse that has inter-
acted with a barrier [22,33,34]. For the reference pulse, the
time 7, is the time for all the energy (U, stored in the region
of length L to leave in the forward direction, given an input
flux P;: t;=(Uy)/ P;. For the tunneling pulse, given the same
incident power P;, the stored energy is much less than in the
case of the reference pulse. Let that stored energy be a({U,)
where a<< 1. There are two channels of escape for the stored
energy: the reflection (front) channel and the transmission
(back) channel. The lifetime of this stored energy, escaping
through both channels is ,=a{U,)/ P,. Since a<<1 and P; is
the same, 7, will be much smaller than #; by the factor a. This
explains why the transmitted pulse peaks sooner than the
reference pulse and why the delay time gets shorter as the
transmission of the structure decreases. Every portion of the
slowly varying input field suffers the same delay. This delay
time is not the transit time for forward traverse but the non-
resonant cavity lifetime of stored energy leaving through
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both ends. (Note that since most of the power is reflected, we
have P;=~ P,; hence we can also write t,=a(U,)/ P, which is
the lifetime for stored energy leaving through the reflection
channel.) To reiterate: the peak of the tunneled pulse occurs
sooner because there is less stored energy for the same input
power. Thus, what is really measured in “superluminal” tun-
neling experiments is just the off-resonant cavity lifetime.

III. DOUBLE-BARRIER EXPERIMENT
RECONSIDERED

We now take a closer look at the double-barrier experi-
ment involving cascaded fiber Bragg gratings [22]. This ex-
periment has been taken to be a confirmation of the general-
ized Hartman effect: a lack of dependence of group delay on
barrier separation. The gratings are of length L, each and are
separated by a distance L. The strength of the gratings is
characterized by a coupling constant k. The power transmis-
sion of a grating of length L at the Bragg frequency is

T = 1/cosh?(kLy), (14)

while the overall transmission of the structure under anti-
resonant conditions is given by

S =1/cosh’(2kL,). (15)

This is just the transmission of a grating of length 2L,. The
group delay at midgap and away from Fabry-Pérot reso-
nances can be written [22]

Tg = Tl + T2,
where

71=V1 = S/kv=tanh 2kLy/kv,

7 =\SLIv=[TI(1 + R)]L/v,

with R=tanh’kL,,. The first term 7, is independent of the
separation between the two barriers and is equal to the group
delay of a single barrier of length 2L,. [For quantum par-
ticles 7;=2(tanh 2«L,)/ kv, where the factor of 2 comes from
the self-interference delay in front of the barrier]. In the limit
of an opaque barrier (kLy>1), S— 0 and hence 7, saturates
at the value of 1/«v, independent of barrier width. This is the
usual Hartman effect which we have explained on the basis
of saturation of the energy or number of particles stored in
the barrier [10-15]. The second term 7, is proportional to the
separation between the barriers and to the transmission of the
barriers. Since T< 1, this term is less than the free propaga-
tion time L/v of light across that distance. In fact, for an
opaque barrier, where 7T— 0, this contribution to the group
delay vanishes entirely, approaching zero as 2e 2<Mo(L/v).
This has been taken to mean that the light wave covers the
distance L between the barriers in zero time and hence trav-
els with infinite velocity [16—18]. We disagree with this in-
terpretation. The group delays seen here are not necessarily
propagation delays but are a measure of cavity lifetime.
These delays are equal to the sum of dwell times in each of
the regions and are proportional to the energy stored. The
energy in the interbarrier region is proportional to the length
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L of this region. However, it is also proportional to the trans-
mission of the first barrier. If the transmission of the first
barrier is zero then no light enters the interbarrier region and
hence the “lifetime” there is zero. This is not a transit time.
The lack of independence of the group delay on the barrier
separation L for T—0 (the so-called generalized Hartman
effect) is thus seen as an artifact resulting from the absence
of light in the regions beyond the first barrier. On the other
hand, under resonant conditions Eq. (12) shows that the life-
time will grow exponentially with the thickness of the barri-
ers as e2*lo(L/v).

An examination of the experimental results confirms all
our conclusions. We first note that the pulse length of 1.3 ns
is much greater than the transit time of a light front through
the medium (0.2 ns) and hence, as in all other reports of
superluminal propagation, quasistatic conditions hold. Con-
trary to the descriptions based on “reshaping,” the transmit-
ted pulse does not come from just the early tail of the inci-
dent pulse. It is the result of the cavity releasing energy
stored from all earlier times. Second, the authors do in fact
observe a dependence of “tunneling time” on barrier separa-
tion. Their plot of tunneling time versus barrier separation
does show a rise, the slope of which should be given by 7/ v.
We can actually estimate the transmission from the slope of
their measured delays. The interbarrier delay increases from
a value of about 32 to 50 ps as the barrier separation is
increased from 10 to 50 mm. This yields a slope of 4.5
X 107! s/m. Using the background refractive index of 1.452
we find a power transmission of about 0.9%. This is not far
from the value of 0.8% given in Ref. [22] as the minimum
transmission of the cascaded gratings. Since more than 99%
of the incident energy is reflected, the measured delay cannot
be associated with a forward traversal time.

The arguments presented here hold also for the case of
multiple rectangular barriers and for arrays of & function
potentials. For example, in Ref. [19] it is found that the
phase time for a system of N opaque barriers depends neither
on the barrier width and interbarrier distance nor on the num-
ber of barriers. All these results can be explained by the
vanishing of the transmission amplitude: if no energy or par-
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ticles can be stored, the storage time is zero. It does not
imply infinite velocity.

IV. CONCLUSIONS

We have shown explicitly that the group delay and dwell
time in tunneling are storage times of energy and of particles
and should not be associated with a forward transit group
velocity in situations where a long wave packet (longer than
the barrier) is mostly reflected. In particular, we have shown
that for double-barrier tunneling, the lack of dependence of
tunneling time on barrier separation (generalized Hartman
effect) is an artifact of the absence of stored energy in the
interbarrier region when the transmission of the first barrier
goes to zero. The group delay in fact increases linearly with
barrier separation when the transmission is nonzero.

The association of the transmission group delay with a
transmission group velocity in highly reflective systems
leads to serious logical difficulties. Such a connection re-
quires that a pulse travels faster and faster as the transmis-
sion of the structure is reduced: the more repulsive the bar-
rier the faster the wave packet wants to travel through it. This
leads to the absurd conclusion that the pulse somehow trav-
els with infinite velocity when the transmission of the struc-
ture has been reduced to zero. Such a logical conundrum is
removed with the correct interpretation of the group delay in
these cases as a lifetime and not a transit time. If the group
velocity is to remain a meaningful physical concept as the
speed with which a quantum particle travels, we must clearly
disallow the possibility of such infinite values. Ultimately,
experiments measure delay times and not velocities. Only if
it can be shown that the delay is a transit time can one divide
the path length L by the delay 7, to obtain a meaningful
velocity.
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